Problem
The four adjacent digits in the 1000-digit number that have the greatest product are 9 × 9 × 8 × 9 = 5832.
73167176531330624919225119674426574742355349194934
96983520312774506326239578318016984801869478851843
85861560789112949495459501737958331952853208805511
12540698747158523863050715693290963295227443043557
66896648950445244523161731856403098711121722383113
62229893423380308135336276614282806444486645238749
30358907296290491560440772390713810515859307960866
70172427121883998797908792274921901699720888093776
65727333001053367881220235421809751254540594752243
52584907711670556013604839586446706324415722155397
53697817977846174064955149290862569321978468622482
83972241375657056057490261407972968652414535100474
82166370484403199890008895243450658541227588666881
16427171479924442928230863465674813919123162824586
17866458359124566529476545682848912883142607690042
24219022671055626321111109370544217506941658960408
07198403850962455444362981230987879927244284909188
84580156166097919133875499200524063689912560717606
05886116467109405077541002256983155200055935729725
71636269561882670428252483600823257530420752963450
Find the thirteen adjacent digits in the 1000-digit number that have the greatest product. What is the value of this product?
Solution
Two optimizations I made to make the program quicker are
- Keep the previous product value, when it is not 0, divide the previous product value by the number at index-1, and multiply the result by the number at index+12.
- Check if the current sequence of numbers contains any 0s, if it does, move on to the next index. (I use bit operation to determine this. It's probably overkill, but I was so obsessed with the idea of 'going through the array only once')
To explain the logic of determining whether a sequence of digits contains any 0s using bit operation, let's assume the length is sequence is 4, and here is a sample sequence 2708209487.
Firstly, we are checking 2708. Iterate from left to right, when we see a 0 we push a 1 to a queue, when we see a none 0, we push a 0 to the queue. The result is 0100 (decimal number 4). The code to achieve this is
if (numAt(i) == 0){
zeros |= 1 << j;
}
When the result > 0, it means the sequence contains a 0.
The next sequence to check is 7082. We could repeat the previous step, but we don't have to. We can simply get rid of the right most digit of the previous result and left pad with new digit, in this case, 2.
Here is the relevant code.
int result = previousZeros >> 1; //Get rid of the right most digit
if (numAt(index+NUMBER-1)==0){
result |= 1 << (NUMBER - 1); //Left pad a 0 or 1 for the new digit
}
Complete code
private static final int NUMBER = 13;
private static final String STR =
"73167176531330624919225119674426574742355349194934"+
"96983520312774506326239578318016984801869478851843"+
"85861560789112949495459501737958331952853208805511"+
"12540698747158523863050715693290963295227443043557"+
"66896648950445244523161731856403098711121722383113"+
"62229893423380308135336276614282806444486645238749"+
"30358907296290491560440772390713810515859307960866"+
"70172427121883998797908792274921901699720888093776"+
"65727333001053367881220235421809751254540594752243"+
"52584907711670556013604839586446706324415722155397"+
"53697817977846174064955149290862569321978468622482"+
"83972241375657056057490261407972968652414535100474"+
"82166370484403199890008895243450658541227588666881"+
"16427171479924442928230863465674813919123162824586"+
"17866458359124566529476545682848912883142607690042"+
"24219022671055626321111109370544217506941658960408"+
"07198403850962455444362981230987879927244284909188"+
"84580156166097919133875499200524063689912560717606"+
"05886116467109405077541002256983155200055935729725"+
"71636269561882670428252483600823257530420752963450";
public static void main(String[] args) {
long previousProduct = calulateProduct(0, 0);
long greatestProduct = previousProduct;
int zeros = zeros(0);
for (int i=1; i<STR.length()-NUMBER; i++){
zeros = zeros(i, zeros);
if (zeros == 0){
long product = calulateProduct(i, previousProduct);
previousProduct = product;
if (product > greatestProduct){
greatestProduct = product;
}
}else{
previousProduct = 0;
}
}
System.out.println(greatestProduct);
}
private static long calulateProduct(int index, long previousProduct) {
if (previousProduct > 0){
return previousProduct / numAt(index-1) * numAt(index+NUMBER-1);
}
long product = 1;
for (int i=index; i<index+NUMBER; i++){
product *= (long)numAt(i);
}
return product;
}
private static int zeros(int index){
int zeros = 0;
for (int i=index, j=0; i<index+NUMBER; i++,j++){
if (numAt(i) == 0){
zeros |= 1 << j;
}
}
return zeros;
}
private static int zeros(int index, int previousZeros){
if (previousZeros == -1){
return zeros(index);
}
int result = previousZeros >> 1;
if (numAt(index+NUMBER-1)==0){
result |= 1 << (NUMBER - 1);
}
return result;
}
private static long numAt(int index){
return Long.valueOf(STR.charAt(index)+"");
}