Tuesday, 28 January 2014

Find Nth to last element in a singly linked list

Use recursion
 public class FindNthToLast {  
        
      public static void main(String[] args){  
           LinkedListNode node 
              = LinkedListNode.createLinkedList(new int[]{1,2,3,4,5,6,7,8,9});  
           LinkedListNode.print(node);  
           System.out.println("\n=====================");  
           LinkedListNode found = find(node, 2);  
           System.out.println(found.data);  
      }  
        
      private static int count = 0;  
        
      public static LinkedListNode find(LinkedListNode head, int n){  
           if (head == null){  
                return null;  
           }  
           LinkedListNode found = find(head.next, n);  
           count++;  
           if (count==n){  
                return head;  
           }  
           return found;  
      }  
 }  

 public class LinkedListNode {  
      public int data;  
      public LinkedListNode next;  
        
      public LinkedListNode(int data) {  
           super();  
           this.data = data;  
      }  
        
      public static void print(LinkedListNode head){  
           LinkedListNode current = head;  
           while (current != null){  
                System.out.print(current.data+" ");  
                current = current.next;  
           }  
      }  
        
      public static LinkedListNode createLinkedList(int[] arr){  
           LinkedListNode head = new LinkedListNode(arr[0]);  
           LinkedListNode current = head;  
           for (int i=1; i<arr.length; i++){  
                LinkedListNode temp = new LinkedListNode(arr[i]);  
                current.next = temp;  
                current = temp;  
           }  
           return head;  
      }  
 }  

Coins

Given an infinite number of quarters (25 cents), dimes (10 cents), nickels (5 cents) and pennies (1 cent), write code to calculate the number of ways of representing n cents.

 /**  
  * numberOfWays(25, 3) = numberOfWays(25-1, 0) + numberOfWays(25-5, 1)  
  * + numberOfWays (25-10, 2) + numberOfWays (25-25, 3)  
  *   
  * numberOfWays(25-1, 0) = 1  
  * numberOfWays(25-5, 1) = numberOfWays(20, 1) = numberOfWays(20-1, 0)   
  * + numberOfWays(20-5, 1)   
  * ......   
  * @author zsunm  
  *  
  */  
 public class Coin {  
        
      private static final int[] COINS = {1, 5, 10, 25};  
        
      public static int numberOfWays(int n){  
           if (n == 0) return 0;  
           return numberOfWays(n, 3);  
      }  
        
      /**  
       * The number of ways to represent n cents by using the coins  
       * up to the specified coinIndex of the COINS array  
       * Example 1: numberOfWays(10, 2) means the number of ways  
       * to represent 10 cents using 1 cent, 5 cents, and 10 cents,   
       * because COINTS[2] = 10  
       *   
       * Example 2: numberOfWays(25, 3) means the number of ways  
       * to represent 25 cents using 1 cent, 5 cents, 10 cents, and 25 cents   
       * because COINTS[3] = 25  
       *   
       * @param n cents  
       * @param coinIndex the coin index of COINS array that can be used up to  
       * @return  
       */  
      private static int numberOfWays(int n, int coinIndex) {  
           if (n < 0){  
                return 0;  
           }  
           if (n == 0){  
                return 1;  
           }  
           int result = 0;  
           for (int i=0; i<=coinIndex; i++){  
                result += numberOfWays(n-COINS[i], i);  
           }  
           return result;  
      }  
   
      /**  
       * @param args  
       */  
      public static void main(String[] args) {  
           System.out.println(numberOfWays(25));  
      }  
   
 }  

Solve Eight Queens problem with 1D array

The following program prints out all solutions for N Queens problem. 

There are 92 solutions for 8 Queens.

 The solution uses a 1D array and does not use recursion.

 public class EightQueen {  
   
      private static final int N = 8;  
      //queens[2]=3, means the queen on row 2 is placed on column 3
      private static int[] queens = new int[N];  
      private static int index = 0;  
      private static int counter = 0;  
        
      public static void placeQueens(){  
           int previousColumn = -1;  
           boolean noMoreSolutions = false;  
           while (!noMoreSolutions){  
                while (index < N){  
                     int col = getColumnForNextRow(previousColumn);  
                     if (col != -1){  
                          queens[index++] = col;  
                          previousColumn = -1;  
                     }else if (index > 0){  
                          previousColumn = queens[--index];  
                     }else{  
                          noMoreSolutions = true;  
                          System.out.println("No More Solutions");  
                          break;  
                     }  
                }  
                if (!noMoreSolutions){  
                     print();  
                     System.out.println("Solution #"+ ++counter);  
                     //Let's find another solution  
                     previousColumn = queens[--index];  
                }  
           }  
      }  
        
      private static int getColumnForNextRow(int previousColumn) {  
           int startCol = previousColumn + 1;  
           for (int j=startCol; j < N; j++){  
                if (!canAttackExistingQueens(j)){  
                     return j;  
                }  
           }  
           return -1;  
      }  
        
      private static boolean canAttackExistingQueens(int col) {  
           for (int i=0; i<index; i++){  
                if (canAttackQueen(index, col, i, queens[i])){  
                     return true;  
                }  
           }  
           return false;  
      }  
   
      private static boolean canAttackQueen(int row1, int col1, int row2, int col2) {  
           return sameCol(col1, col2) || sameDiagonal(row1, col1, row2, col2);  
      }  
   
      private static boolean sameCol(int col1, int col2) {  
           return col1 == col2;  
      }  
   
      private static boolean sameDiagonal(int row1, int col1, int row2, int col2) {  
           return col1 - col2 == row1 - row2 || col1 - col2 == row2 - row1;  
      }  
        
      private static void print(){  
           for (int i=0; i<N; i++){  
                for (int j=0; j<N; j++){  
                     if (queens[i] == j){  
                          System.out.print("Q ");  
                     }else{  
                          System.out.print("* ");  
                     }  
                }  
                System.out.println();  
           }       
      }  
   
      /**  
       * @param args  
       */  
      public static void main(String[] args) {  
           placeQueens();  
      }  
 }